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Abstract The goal of this paper is to examine the
performance of the conventional and renormalized single-
reference coupled-cluster (CC) methods in calculations of
the potential energy surface of the water molecule. A com-
parison with the results of the internally contracted multi-
reference configuration interaction calculations including the
quasi-degenerate Davidson correction (MRCI(Q)) and the
spectroscopically accurate potential energy surface of water
resulting from the use of the energy switching (ES) approach
indicates that the relatively inexpensive completely renor-
malized (CR) CC methods with singles (S), doubles (D), and
a non-iterative treatment of triples (T) or triples and qua-
druples (TQ), such as CR-CCSD(T), CR-CCSD(TQ), and
the recently developed rigorously size extensive extension
of CR-CCSD(T), termed CR-CC(2,3), provide substantial
improvements in the results of conventional CCSD(T) and
CCSD(TQ) calculations at larger internuclear separations. It
is shown that the CR-CC(2,3) results corrected for the effect
of quadruply excited clusters through the CR-CC(2,3)+Q
approach can compete with the highly accurate MRCI(Q)
data. The excellent agreement between the CR-CC(2,3)+Q
and MRCI(Q) results suggests ways of improving the global
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1 Introduction

The key to a successful description of molecular potential
energy surfaces involving bond making and breaking is an
accurate and balanced treatment of dynamical and
non-dynamical electron correlation effects. Balancing dyna-
mical and non-dynamical correlation effects in molecular
systems in a proper manner has been one of the main themes
of the research conducted by Professor Mark S. Gordon, as
reflected, for example, in a large number of truly inspiring
computational studies of reaction pathways and mechanisms
in various areas of chemistry, carried out over the years by
Professor Mark S. Gordon and co-workers. In this paper,
we focus on the problem of balancing dynamical and non-
dynamical correlations in coupled-cluster (CC) theory [1-5]
(cf. Refs. [6-14] for selected reviews).

Conventional single-reference CC methods, such as, for
example, the popular CCSD(T) approach [15], in which a
non-iterative correction due to triply excited clusters (T) is
added to the CCSD (CC singles and doubles) [16—18] energy,
and its extensions to quadruply excited clusters (Q) through
the CCSD(TQy¢) [19], CCSD(TQ),b [20], and similar
schemes, provide an excellent description of dynamical cor-
relation effects, which dominate electron correlations in the
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closed-shell regions of potential energy surfaces, but they
completely fail when the bond breaking, biradicals, and other
situations characterized by larger non-dynamical correlation
effects are studied (see, e.g., Refs. [7,10-14,20-57] for repre-
sentative examples). Traditionally, the adequate treatment
of ground- and excited-state potential energy surfaces along
bond breaking coordinates and other cases of electronic
quasi-degeneracies has been the domain of expert
multi-reference methods, and a great deal of progress has
been achieved in the area of multi-reference calculations, but
even the most successful multi-reference approaches are not
without limitations. For example, the low-order multi-
reference perturbation theory (MRPT) methods (cf., e.g.,
Refs. [58,59], and references therein), such as the popular
second-order CASPT2 approach [60-63], may encounter
serious difficulties with balancing dynamical and non-
dynamical correlations in studies of chemical reaction path-
ways and relative energetics of systems characterized by a
varying degree of biradical character [49,50,64], while the
more robust multi-reference configuration interaction
(MRCI) approaches, including the highly successful inter-
nally contracted MRCI approach with quasi-degenerate
Davidson corrections (the MRCI(Q) method [65,66]), are
often prohibitively expensive. One should also keep in mind
that all multi-reference theories require that the user speci-
fies several additional parameters that do not enter single-
reference calculations, such as active orbitals or multiple
reference determinants and, particularly in the case of MRCI,
numerical thresholds for neglecting unimportant electron
configurations. At present, a universally applicable and
accepted methodology for choosing these parameters is
absent [67,68], and a great deal of expertise and experience is
required to perform multi-reference calculations in a proper
manner (cf., e.g., Ref. [58]).

From this point of view, the development of practical
single-reference procedures that could be applied to at least
some of the most frequent multi-reference situations, such as
single and double bond dissociations, biradicals, and exci-
ted states dominated by two-electron transitions, and that
could provide a balanced description of dynamical and non-
dynamical correlation effects with a more or less black-box
effort would be an important step toward widespread pro-
gress. This is not to diminish the role of multi-reference
approaches, which clearly have the much desired flexibility
needed for the accurate treatment of all kinds of electronic
quasi-degeneracies. We are only reflecting on the fact that
single-reference methods are computational black-boxes,
which are generally much easier to use when compared to
multi-reference approaches and which have significantly
contributed to the popularity of the computational quantum
chemistry techniques. Thus, it is useful to explore the pos-
sibility of attempting to solve at least some classes of che-
mical problems involving larger non-dynamical correlation
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effects without resorting to multi-reference calculations. This
has been the motivation behind the recent development of
the non-iterative CC approaches based on the partitioning
of the similarity-transformed Hamiltonian pursued by
Head-Gordon and co-workers [52-56] (cf., also, Ref. [69]),
adopted in a slightly modified form by Hirata et al. [38,70]
and commonly labeled as the CCSD(2) approximations, the
spin-flip CC methods developed by Krylov and co-workers
[71-73], the iterative and non-iterative methods [12,13,39,
55,56,74-76] based on the extended CC theories of Arponen
and Bishop [77-83] and Piecuch and Bartlett [84], and the
renormalized and other CC approaches based on the method
of moments of CC equations [10-14,20,29,30,35,36,39—
42,44,76,85-88], including those that have been incorpo-
rated (cf., e.g., Refs. [41,87,89]) in the GAMESS package
[90], maintained and distributed at no cost by Professor Mark
S. Gordon and Dr. Michael W. Schmidt.

In this work, we focus on the renormalized CC methods for
ground electronic states [10-14,20,29,30,39-42,44], which
represent a new generation of non-iterative single-reference
CC approaches that are designed to improve the results of
the CCSD(T) and CCSD(TQ) calculations in the bond brea-
king/biradical regions of molecular potential energy surfaces,
while preserving the ease-of-use (black-box character)
and the relatively low computer costs of the CCSD(T) and
CCSD(TQ) approximations. In addition to the original and
well-established CR-CCSD(T) (completely renormalized
CCSD(T)) method [10-13,20,29,30], in which a simple non-
iterative correction due to triply excited clusters is added to
the CCSD energy, and its CR-CCSD(TQ) (completely renor-
malized CCSD(TQ)) extensions abbreviated as
CR-CCSD(TQ),a and CR-CCSD(TQ),b, and described in
Refs. [10-13,20,29,30] as well, in which corrections due to
triply and quadruply excited clusters are added to the CCSD
energy, we examine the performance of the recently develo-
ped rigorously size extensive generalization of
CR-CCSD(T), termed CR-CC(2,3), and its augmented
CR-CC(2,3)+Q(a) and CR-CC(2,3)+Q(b) versions. The
CR-CC(2,3) approach, in which the CCSD energy is correc-
ted for triples in a manner similar to the CCSD(T),
CR-CCSD(T), and other non-iterative triples approximations,
has been described in detail in Refs. [41,42,44]. In the
CR-CC(2,3)+Q(a) and CR-CC(2,3)+Q(b) methods, the
CR-CC(2,3) energies are approximately corrected for
the dominant quadruples effects, estimated by forming the
differences of the CR-CCSD(TQ),a (the CR-CC(2,3)+Q(a)
case) or CR-CCSD(TQ),b (the CR-CC(2,3)+Q(b) case) and
CR-CCSD(T) energies. Thus, the CR-CC(2,3)+Q(x), x =
a,b, energies are calculated as CR-CC(2,3)+Q(x) =
CR-CC(2,3) + [CR-CCSD(TQ), x - CR-CCSD(T)] (cf., e.g.,
Refs. [49,50]). We consider two variants of the
CR-CC(2,3) approach, namely, the full CR-CC(2,3) method,
as described in Refs. [41,42,44], and the approximate
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CR-CC(2,3),A variant, in which the diagonal matrix ele-
ments of the similarity-transformed Hamiltonian of CCSD
involving triply excited determinants, ((Dl.“jl;ﬂl-_l (CCSD)|
@;ﬁc), which enter the CR-CC(2,3) triples correction, are
replaced by the spin-orbital energy differences characterizing
triple excitations, (€, +€p+€.—€; —€; —€), where €, are the
usual spin-orbital energies (see, e.g., Ref. [44]). It is inter-
esting to examine the full implementation of CR-CC(2,3)
as well as its approximate CR-CC(2,3),A version, since the
CR-CC(2,3),A approach is equivalent to the CCSD(2)r
method of Ref. [38], which also aims at eliminating or redu-
cing the failures of CCSD(T) at larger internuclear separa-
tions (see Refs. [41,42,44] for further details). The complete
list of all CC methods used in this work, papers in which these
methods were introduced and described, and scalings of the
most expensive CPU steps characterizing each CC method
employed in this study with the numbers of occupied and
unoccupied orbitals in a molecular basis set used in correla-
ted calculations, n, and n,, respectively, are summarized in
Table 1.

It has been demonstrated that the CR-CCSD(T) and
CR-CC(2,3) approaches (particularly, CR-CC(2,3)) provide
very good results for single bond breaking [10-13,29-31,
33,34,37,40-44,89,91,92], and reaction pathways involving
biradicals and similar cases of electronic quasi-degeneracies
[42,46-51,59,93,94], eliminating the failures of the conven-

Table 1 The list of CC methods used in this work, papers in which
these methods were introduced, and scalings of the most expensive
CPU steps characterizing each method with the numbers of occupied

tional CCSD(T) and CCSD(TQ) methods in those multi-
reference situations. The CR-CCSD(TQ),a and CR-
CCSD(TQ),b extensions of CR-CCSD(T) provide further
improvements in the results for single bond breaking [11-
13,29,31,33], while helping to obtain reasonable accuracies
in cases of multiple bond stretching or breaking [11-13,20,
28-30,36,39-41,44,76] (cf., also, Ref. [57] for the analogous
findings for the approximate versions of CR-CCSD(TQ)).
However, with an exception of one study of a global potential
energy surface of the BeFH system [37], none of the previous
calculations have examined the performance of the CR-CC
approaches in large-basis-set calculations for different poten-
tial energy surface cuts of a triatomic molecule. This is
particularly true for the recently developed [41,42,44] CR-
CC(2,3) approach. According to the benchmark calculations
reported in Refs. [41,42,44] and several applications to reac-
tion mechanisms in organic [42,51] and bioinorganic [49,50]
chemistries, the CR-CC(2,3) approach provides the results
which are competitive or at least as good as those obtained
with CCSD(T) for closed-shell molecules near the equili-
brium geometries, while improving the already reasonable
results of the CR-CCSD(T) calculations in the biradical/bond
breaking regions. Moreover, the CR-CC(2,3) approach
appears to be substantially more accurate than another type
of renormalized CC approach, termed LR-CCSD(T) [40,95],
and the aforementioned CCSD(2)7 [38] method [41,42,44].

(n,) and unoccupied (n,,) orbitals in a molecular basis set used in cor-
related calculations

Method Reference(s) The most expensive CPU steps
Iterative Non-iterative
CCSD? [16-18] nZnd
CCSD(T) [15] nZn’ n3nd
CR-CCSD(T) [10,30] nZnd 2n3nd
CR-CC(2,3), A = CCSD(2)7° [38,41,42,44] nZn’ 2n3nt
CR-CC(2,3)° [41,42,44] nZnd 2n3nd
CCSD(TQ),b? [20] nZnd nind (T), n2nd (Q)
CR-CCSD(TQ),x (x = a, b)° [20] nZnd 2n3n (T), 2n2n3 (Q)
CR-CC(2,3)+Q(x) (x = a, b)f nZnd 2030t (1), 20203 (Q)

4 Reference [16] describes the spin-orbital formulation of CCSD. For the non-orthogonally spin-adapted formulation of CCSD for singlet states,
see Ref. [17]. For the orthogonally spin-adapted CCSD theory for singlet states, see Ref. [18]

b CCSD(2)7 is obtained by neglecting contributions due to connected quadruply excited clusters in the CCSD(2) method of Ref. [70]. It can also be
obtained from the full CR-CC(2,3) approach of Refs. [41,42] by replacing the diagonal matrix elements of the similarity-transformed Hamiltonian
of CCSD involving triply excited determinants, (Q>;’ji”|1-_1 (CCSD) |<1)f‘jl}("), which enter the CR-CC(2,3) triples correction, by the spin-orbital energy
differences characterizing triple excitations, (€, + €, + €. — €; — € — €;), where €, are the usual spin-orbital energies [44]

¢ The full CR-CC(2,3) approach, also referred to in Refs. [41,44] as variant D of the CR-CC(2,3) or CR-CCSD(T) method

4 CCSD(TQ),b can be obtained from the factorized CCSD(TQy) approach of Ref. [19] by replacing the first-order estimate for the doubly excited
T> clusters in the correction due to quadruples defining the CCSD(TQy) energy by the CCSD value of 7>

¢ CR-CCSD(TQ),a is equivalent to the CR-CCSD(TQ) approach defined in Refs. [10,30]. CR-CCSD(TQ),b is obtained from CR-CCSD(TQ),a by
replacing the first-order estimate for the doubly excited 75 clusters in the correction due to quadruples defining the CR-CCSD(TQ),a energy by the
CCSD value of T

T CR-CC(2, 3)+Q(x) = CR-CC(2, 3) 4+ [CR-CCSD(TQ), x — CR-CCSD(T)], x = a, b
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As shown in Refs. [41,42,44], the CR-CC(2,3) theory seems
to provide the results of the full CCSDT (CC singles, doubles,
and triples) [96,97] quality when bond breaking is exami-
ned. It is, therefore, very interesting to investigate how the
CR-CC(2,3) approach performs when a few different poten-
tial energy surface cuts of a triatomic molecule are exami-
ned. As explained in Refs. [41,42], the CR-CC(2,3) approach
can be extended to quadruple excitations through the CR-
CC(2,4) theory, but the CR-CC(2,4) method has not been
implemented yet and we may have to investigate formal
issues such as the coupling of triples and quadruples in the
definition of the CR-CC(2,4) energy corrections, ignored in
the original papers on the CR-CC(m 4,m p) methods [41,42].
On the other hand, a highly accurate description of poten-
tial energy surfaces that might help various spectroscopic
and dynamical studies may require the inclusion of qua-
druples, in addition to triples that are already well described
by the CR-CC(2,3) theory. Thus, in this paper we examine
the effect of quadruples on the CR-CC(2,3) results by adding
the a posteriori corrections due to quadruply excited clusters
extracted, as explained above, from the CR-CCSD(TQ),a or
CR-CCSD(TQ),b calculations, to the CR-CC(2,3) energies.

The CR-CCSD(T), CR-CCSD(TQ),a, CR-CCSD(TQ),b,
CR-CC(2,3),A = CCSD(2)r, CR-CC(2,3), CR-CC(2,3)
+Q(a), and CR-CC(2,3)+Q(b) methods, and their conventio-
nal (i.e., not renormalized) CCSD(T) and CCSD(TQ),b ana-
logs are carefully tested by examining three important cuts
of the global potential energy surface of the water molecule.
Those cuts are: (i) the dissociation of a single O—H bond
which correlates with the H(1s 2S) + OH(X 2I7) asymp-
tote, (ii) the simultaneous dissociation of both O—H bonds
of the water molecule correlating with the 2H(1s 28) +
O(2p* 3 P) channel, and (iii) the C», dissociation pathway
of the water molecule into Hy (X 12; yand O(2p* ' D). The
CR-CCSD(T), CR-CCSD(TQ),a, CR-CCSD(TQ),b,
CR-CC(2,3),A, CR-CC(2,3), CR-CC(2,3)+Q(a), and
CR-CC(2,3)+Q(b) results and the corresponding CCSD,
CCSD(T), and CCSD(TQ),b results, all obtained with the
basis sets of the aug-cc-pCVXZ (X = D, T, Q) quality [98—
101], are compared with the results of the large-scale
MRCI(Q) calculations, also carried out in this work, and the
spectroscopically accurate global potential energy surface of
water resulting from the use of the energy switching (ES)
approach [102].

We chose the water molecule as our benchmark system
for a number of reasons. Clearly, water is among the most
important molecules and a prototype system for a variety
of spectroscopic and reaction dynamics studies. There are
many applications involving water molecule in which the
knowledge of a reliable potential energy surface is required.
Selected examples of such applications include the spectrum
of the water vapor, which is important for the understanding
of the absorption and retention of sunlight in Earth’s atmos-
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phere and physics of other planets and stars [103—112], and
combustion studies involving hot steam. For example, the
0@2p* 'D) + Hy(X ') — OH(X 2IT) + H(ls 29)
reaction, which takes place on the ground-state potential
energy surface of water, is known to play a significant role
in combustion and atmospheric chemistry [113,114]. Two of
the dissociation pathways examined in this work, namely, the
dissociation of a single O-H bond and the C3, dissociation
path of the water molecule into Hy(X ' ) and O(2p* ' D)
are directly related to this important reaction. The water
molecule has received considerable attention in recent years
due to several attempts to produce the spectroscopically and
dynamically accurate global potential energy surface using
ab initio and other theoretical means [102,109,115-119].
One such attempt has resulted in the ES potential function
used in this work [102]. By comparing various CR-CC and
MRCI(Q) data with the energies provided by the ES poten-
tial function, we may suggest ways of improving the ES and
similar potentials in intermediate-energy regions where no
precise or well understood spectroscopic or ab initio data
are available. Thus, in addition to testing CR-CC methods,
we may contribute to the ongoing effort to produce the high
accuracy water surface which could be used in a variety of
spectroscopic and dynamical applications.

2 Computational details

In order to illustrate the performance of the renormalized
CC methods discussed in the Introduction and listed in
Table 1, we performed the CR-CCSD(T), CR-CCSD(TQ),a,
CR-CCSD(TQ),b, CR-CC(2,3),A (= CCSDQ2)7),
CR-CC(2,3), CR-CC(2,3)+Q(a), and CR-CC(2,3)+Q(b) cal-
culations for the three cuts of the global potential energy
surface of the water molecule. Those cuts are: (i) the dis-
sociation of a single O-H bond, which correlates with the
H(ls 28) + OH(X 2IT) asymptote, (ii) the simultaneous
dissociation of both O—H bonds, which correlates with the
2H(1s 2S) + O(2p* 3 P) channel, and (iii) the C», disso-
ciation pathway of the water molecule into Hy(X ' 2 ;“ ) and
(01¢] p4 D). In the case of cut (i), one of the two O—H bonds
and the H-O-H angle were kept fixed at their respective equi-
librium values taken from Ref. [109] (R, = 0.95785 A and
o, = 104.501 degree, respectively). In the case of the Cy, -
symmetric cut (ii), the H-O-H angle o was kept fixed at
its equilibrium value taken from Ref. [109] (o, = 104.501
degree). In the case of another Cj,-symmetric cut, namely
cut (iii), we followed the approximate energy path toward
the dissociation of the water molecule into Hp (X IZ‘; ) and
OQ2p* ' D), determined using the potential function of Ref.
[102] and defined by the coordinate Y, which is the distance
between the O nucleus and the line connecting the H nuclei,
and the properly optimized H-O-H angle « [113,114]. The
equilibrium values of Y and « are ¥, = 0.58641 A and
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o, = 104.501 degree. The results of various CR-CC calcu-
lations are compared with those obtained with the conventio-
nal CCSD, CCSD(T), and CCSD(TQ),b methods, which are
very well suited for the equilibrium region but are expected to
face considerable difficulties when water starts to dissociate
into open-shell fragments, and with the results obtained with
the MRCI(Q) approach, which is capable of providing an
accurate global potential energy surface, including all three
dissociation channels listed above.

We also compare the results of various CR-CC and
MRCI(Q) calculations with the highly accurate global poten-
tial energy surface of water resulting from the use of the ES
approach of Varandas [102]. The ES surface of Ref. [102]
was obtained by combining and further refining the many-
body expansion [120] potential of Murrell and Carter [115]
and the polynomial potential form of Polyansky, Jensen, and
Tennyson [116]. The ES surface has a spectroscopic or nearly
spectroscopic (~1-10 cm™") accuracy up to about 19,000
cm~! above the global minimum and remains quite accurate
at higher energies. With the proper treatment of long-range
forces and other suitable refinements, the ES potential of
Ref. [102] has an overall double many-body expansion [121—
124] quality, making it very useful to study reaction dyna-
mics involving water. In particular, the ES potential of Ref.
[102] used in this work, and its multi-sheeted extensions [118,
119], have been exploited in a number of dynamical calcula-
tions, including, for example, the successful rate constant and
cross-section calculations for the O(2p* ' D)+ Hy(X ' X D)
reaction [113,114]. As mentioned in the Introduction, the
0@2p* 'D)+Hy(X 12;) — OH(X 2IT) +H(ls %S) reac-
tion, which takes place on the ground-state potential energy
surface of water, is known to play a significant role in com-
bustion and atmospheric chemistry. Two of the above cuts
(cut (i) and (iii)) are directly related to this process. In addi-
tion to testing the CR-CC (also, MRCI(Q)) methods, by com-
paring the best CR-CC and MRCI(Q) data with the energies
provided by the ES potential function, we suggest ways of
improving the ES potential, particularly in intermediate and
selected higher-energy regions where precise or well unders-
tood spectroscopic data are not always available and where,
as shown in this work, the best CR-CC and MRCI(Q) calcu-
lations almost perfectly agree with each other.

All CC and CR-CC calculations were performed using the
spin- and symmetry-adapted restricted Hartree—-Fock (RHF)
determinant as a reference. The MRCI(Q) calculations were
performed using the usual multi-determinantal reference
obtained in the single-root complete-active-space self-
consistent-field (CASSCF) calculations. The active space
used in the CASSCF and subsequent MRCI(Q) calculations
consisted of six valence orbitals that correlate with the 1s
shells of the hydrogen atoms and the 2s and 2 p shells of the
oxygen atom. In analogy to active orbitals, the lowest-energy
molecular orbital (~1s orbital of oxygen) was optimized in

CASSCEF calculations, but unlike active orbitals that change
occupancies it remained doubly occupied in all reference
determinants defining the CASSCF and MRCI(Q) wave func-
tions. Since our ab initio results are compared with the spec-
troscopically accurate ES surface of Ref. [102] and since it is
well known that core electrons can significantly affect energy
differences between different points on the potential energy
surface, including the water potential [109,117,125], all elec-
trons were correlated in the CC, CR-CC, and CASSCF-based
MRCI(Q) calculations. This distinguishes our calculations
from Refs. [109,125], in which the effects of core electrons
were added as the a posteriori corrections to the results of
valence-electron calculations.

The calculations were performed with the aug-cc-pCV XZ
basis sets with X = D, T, Q [98-101], in which additio-
nal tight functions are added to the valence basis sets of
the aug-cc-pV XZ quality to improve the description of core
and core-valence correlation effects. The CCSD, CCSD(T),
CCSD(TQ),b, CR-CCSD(T), CR-CCSD(TQ),a, CR-
CCSD(TQ),b, CR-CC(2,3),A, CR-CC(2,3), CR-CC(2,3)+
Q(a), and CR-CC(2,3)+Q(b) calculations were performed
with the system of CC/CR-CC computer codes described
in Refs. [20,30,41,89] and incorporated in the GAMESS
package [90]. The MRCI(Q) calculations were performed
with the MOLPRO package [126]. In addition to the series
of MRCI(Q) calculations using the aug-cc-pCVXZ basis
sets with X = D, T, Q, we performed the high accuracy
MRCI(Q) calculations using the aug-cc-pCV5Z basis, to
determine if the aug-cc-pCVQZ results are reasonably well
converged. We could not perform such calculations using the
CC and CR-CC methods, since the atomic integral package
used by GAMESS is restricted to g functions and the
aug-cc-pCV5Z basis contains / functions which we did not
want to drop in an ad hoc manner. Fortunately, we do not
observe substantial changes in the results, when going from
the aug-cc-pCVQZ to aug-cc-pCV5Z basis sets, which could
alter our main conclusions. In order to facilitate our
presentation, we refer to the aug-cc-pCVXZ basis set by
mentioning the value of it’s cardinal number X (X = 2 for
aug-cc-pCVDZ, X = 3 for aug-cc-pCVTZ, X = 4 for aug-
cc-pCVQZ, and X = 5 for aug-cc-pCV5Z). For example, we
write “the X = 3 basis set” instead of “the aug-cc-pCVTZ
basis set.” Instead of writing “the CR-CC(2,3) calculations
with the aug-cc-pCVTZ basis set,” we simply write “the
CR-CC(2,3)/X = 3 calculations.”

3 Numerical results and discussion: probing potential
energy surface of the water molecule with the
conventional and renormalized coupled-cluster
methods

The results of our calculations are summarized in Tables 2 to
9. Table 2 serves as a reference for the remaining tables,
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Table 2 The ES and MRCI(Q) energies for the three potential energy surface cuts of water examined in this study: (i) the dissociation of a single

O-H bond, (ii) the C»,-symmetric dissociation of both O—H bonds, and (iii) the C», dissociation into Hp (X 12; ) and O(2p4 )}

R o ES MRCI(Q)

X=2 X =3 X=4 X=5
H,O(X 'A)) — H(ls 2S) + OH(X 2IT)
1.25R, 104.501 7367 6753 7177 7354 7396
1.50R, 104.501 18862 17945 18733 18990 19059
1.75R, 104.501 28857 27478 28510 28838 28928
2.00R, 104.501 35583 34067 35226 35615 35721
2.50R, 104.501 41024 40030 41277 41736 41857
3.00R, 104.501 42816 41521 42811 43282 43407
4.00R, 104.501 43779 41938 43250 43723 43848
5.00R, 104.501 43887 41970 43281 43754 43879
H,O(X 'A}) — 2H(1s 28) + 0(2p* 3 P)
1.25R, 104.501 14366 13119 14027 14380 14464
1.50R, 104.501 36152 34506 36188 36706 36843
1.75R, 104.501 54629 52359 54555 55224 55407
2.00R, 104.501 67354 64408 66912 67730 67950
2.50R, 104.501 78170 74341 77126 78113 78374
3.00R, 104.501 80585 76298 79196 80207 80478
4.00R, 104.501 81191 76792 79732 80752 81020
5.00R, 104.501 81219 76840 79776 80795 81062
Y o ES MRCI(Q)

X=2 X=3 X=4 X=5
HyO(X A1) - Ho(X ') + 0@2p* ' D)
0.80 78.808 4998 4501 4809 4981 5023
0.90 69.118 10660 9888 10374 10639 10701
1.00 61.113 17927 16642 17326 17666 17745
1.10 56.072 26589 23953 24887 25287 25383
1.20 53.429 36326 31497 32699 33148 33260
1.30 48.314 43726 38301 39623 40095 40215
1.50 38.432 52137 48794 50171 50662 50786
1.75 29.171 57311 55342 56604 57116 57236
2.00 22.855 58486 56770 57663 58181 58294
4.00 10.589 58696 57534 58058 58590 58694

R is an O-H distance defining the dissociating O—H bond(s), Y (in A) is the distance between O and the line connecting both H nuclei, and « (in
degree) is the H-O-H angle. The equilibrium values of R, Y, and « are R, = 0.95785 A, Y, = 0.58641 A, and o, = 104.501 degree [109]. All
energies E (incm™ 1y are reported as E — E(R,, o), where E(R,, o) are the corresponding values of E at the equilibrium geometry. X is a cardinal
number defining the aug-cc-pCV XZ basis sets used in the MRCI(Q) calculations. In all MRCI(Q) calculations, all electrons were correlated

providing the MRCI(Q) and ES energies along the three
dissociation pathways considered in our calculations. As one
can see, the three potential energy surface cuts probe dif-
ferent energy regions. The single O—H bond dissociation is
characterized by the lowest energies (always reported in this
work relative to the corresponding energies at the equili-
brium geometry of Ref. [109], so that all energies are O at the
equilibrium geometry), which do not exceed 44,000cm™".
The Cy,-symmetric dissociation pathway that leads to the

@ Springer

Hy(X 12;) and O(2p4 95)) products goes to higher
energies, on the order of 59,000 cm™!, and the highest ener-
gies, on the order of 81,000 cm™!, are reached, when the
simultaneous dissociation of both O—H bonds is examined.
The results in Table 2 show that the large scale MRCI(Q) cal-
culations with the X = 5 basis set agree with the ES poten-
tial, to within ~10-200 cm~!, in the R, < R < 2R, and
R > 4R, regions of cut (i), R, < R < 1.5R,and R > 2.5R,
regions of cut (ii), and ¥, < Y < 1.0 Aand Y > 1.75 A
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Table 3

The dissociation of a single O—H bond in water (into H(1s 28) 4+ OH(X 21T); cut(i))

R CCSD CCSD(T)

CR-CCSD(T)

CR-CC(2,3),A* CR-CC(2,3)

X=2 X=3 X=4 X=2 X=3 X=4 X=2

X=3 X=4 X=2 X=3 X=4 X=2 X=3 X=4

7033
18587
28610
35889
43451
46000
47145
47325

7483
19428
29763
37303
45308
48158
49527
49760

7662
19691
30108
37739
45904
48836
50262
50508

7181
18744
28529
35231
40628
40600
38518
37592

7351
18988
28844
35620
41117
41087
38938
37975

6845
18151
27843
34675
41145
42828
43188
43107

1.25R.
1.50R.
1.75R.
2.00R,
2.50R,
3.00R,
4.00R.
5.00R,

6796
18023
27567
34109
39363
39387
37553
36759

6825
18105
27764
34554
40919
42518
42809
42716

7219
18843
28753
35716
42296
43996
44318
44215

6810
18063
27653
34315
40399
41847
42106
42063

7216
18829
28696
35547
41939
43517
43834
43771

7393
19087
29024
35966
42461
44095
44443
44379

7247
18909
28873
35913
42687
44537
44976
44892

7419
19157
29194
36313
43205
45093
45541
45453

7389
19087
29065
36098
42775
44495
44815
44708

R CCSD(TQ),b CR-CCSD(TQ),a

CR-CCSD(TQ).b

CR-CC(2,3)+Q(a)” CR-CC(2,3)+Q(b)”

X=2 X=3 X=4 X=2 X=3 X=4 X=2

X=3 X=4 X=2 X=3 X=4 X=2 X=3 X=4

6771
17965
27461
33948
39145
39234
37630
36964

7167
18703
28446
35098
40432
40445
38536
37713

7338
18949
28764
35491
40925
40928
38941
38075

7197
18797
28689
35659
42340
44162
44580
44460

7370
19046
29012
36060
42858
44715
45140
45016

6794
18035
27648
34398
40759
42432
42845
42798

1.25R.
1.50R.
1.75R.
2.00R,
2.50R,
3.00R,
4.00R.
5.00R,

6793
18036
27656
34420
40811
42482
42842
42735

6758
17947
27466
34060
40066
41501
41759
41690

7166
18717
28512
35293
41592
43141
43438
43339

7344
18976
28843
35714
42114
43716
44042
43941

6759
17946
27457
34037
40014
41451
41763
41754

7168
18718
28509
35277
41549
43098
43449
43416

7346
18978
28840
35701
42075
43677
44056
44021

7199
18798
28685
35643
42297
44119
44591
44536

7372
19048
29010
36047
42820
44676
45154
45095

One of the two O-H bonds and the H-O-H angle are kept fixed at their respective equilibrium values taken from Ref. [109] (R, = 0.95785
A and o, = 104.501 degree, respectively). R is an O-H distance defining the dissociating O-H bond. All energies E (in cm™!) are reported as
E—E(R,, o), where E(R,, a,) are the corresponding values of E at the equilibrium geometry. X is a cardinal number defining the aug-cc-pCVXZ
basis sets used in the calculations. In all CC calculations, all electrons were correlated

2 Equivalent to the CCSD(2)7 approach of Ref. [38]

b CR-CC(2, 3)+Q(x) = CR-CC(2, 3) + [CR-CCSD(TQ), x — CR-CCSD(T)], x = a, b

of cut (iii) (R is the O-H separation for the dissociating
O-H bond or bonds; the meaning of Y has been explained
in Sect. 2). The MRCI(Q)/X = 4 results are not much dif-
ferent, producing the results that in most cases do not differ
from the MRCI(Q)X = 5 results by more than
100-200 cm ™" in the higher energy regions. Thus, with an
exception of the region of intermediate R and Y values (2R, <
R < 4R, for cut (i), 1.5R, < R < 2.5R, for cut (ii), and
1.0A < Y < 1.75 A for cut (iii), the MRCI(Q)/X = 4 or
MRCI(Q)/X = 5 and ES potential functions agree very well.
Clearly, they cannot perfectly agree, since MRCI(Q) is not
the exact theory. Moreover, our MRCI(Q) calculations are the
standard non-relativistic calculations, ignoring relativistic,
non-adiabatic, and quantum electrodynamical effects which
all contribute to the water potential energy surface [109].
Besides, the minimum energy path defining cut (iii) deter-
mined from the ES function is certainly not identical to the
similar path that would result from the MRCI(Q) calculations
and there may be other small differences in the details of the
MRCI(Q)/X = 4 or MRCI(Q)/X = 5 and ES potentials. On
the other hand, the differences between the MRCI(Q)/X = 4
or MRCI(Q)/X = 5 and ES potential energy surfaces in the

aforementioned regions of intermediate R and Y values, and
intermediate or higher, but not the highest energies, which
are as much as 700-800 cm™~! for cut (i) in the R ~ 2.5R,
region, 600-800 cm™! for cut (ii) in the R ~ 1.75R, region,
and 3,500-3,600 cm™! for cut (iii)inthe Y ~ 1.3 A region,
cannot be explained by the mere neglect of the relativistic,
non-adiabatic, and quantum electrodynamical effects. They
indicate that either the MRCI(Q) approach is insufficiently
accurate or the ES potential needs further refinement. The
former is always possible, but the latter explanation would
not be a complete surprise either, since we must remember
that the ES potential function is constructed by combining the
many-body expansion potential of Murrell and Carter [115]
and the polynomial potential form of Polyansky, Jensen, and
Tennyson [116]. This makes the ES potential very accurate
around the minimum, up to about 19,000 cm~!, and in the
asymptotic regions, including the H(1s 2S) + OH(X 2IT),
2H(1s %2S) + O@2p* 3P), and Ho(X 12;) +0@2p* 'D)
asymptotes examined in this study, but the accuracy of the
ES potential function in the regions of intermediate inter-
nuclear separations and energies which connect the spectro-
scopic and asymptotic regions of the water potential energy
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Table 4 The C;,-symmetric double dissociation of water (into 2H(1s 28y + O(Zp4 3 P); cut (i)
R CCSD CCSD(T) CR-CCSD(T) CR-CC(2,3),A? CR-CC(2,3)

X=2 X=3 X=4 X=2 X=3 X=4 X=2 X=3 X=4 X=2 X=3 X=4 X=2 X=3 X=4
1.25R, 13719 14684 15042 13212 14041 14381 13325 14191 14534 13279 14127 14466 13226 14100 14459
1.50R, 35972 37782 38315 34695 36253 36744 35036 36676 37175 34908 36501 36992 34780 36421 36960
1.75R, 55003 57497 58208 52556 54646 55290 53387 55626 56283 53100 55245 55884 52833 55093 55771
2.00R, 68471 71615 72538 64123 66666 67498 66020 68801 69647 65357 67973 68789 64789 67559 68439
2.50R, 79497 84194 85573 67039 70640 71855 75186 79223 80442 72329 75866 77002 71027 74896 76142
3.00R, 79696 85261 86853 56639 59917 61074 74436 79026 80364 69964 73450 74560 68538 72292 73618
4.00R, 78228 84053 85708 43548 45309 46055 72499 77153 78494 67359 70653 71700 66295 69878 71116
5.00R, 77699 83526 85183 39737 40815 41383 71808 76416 77746 66549 69777 70810 65742 69234 70232
R CCSD(TQ),b CR-CCSD(TQ),a CR-CCSD(TQ),b CR-CC(2,3)+Q(a)” CR-CC(2,3)+Q(b)?

X=2 X=3 X=4 X=2 X=3 X=4 X=2 X=3 X=4 X=2 X=3 X=4 X=2 X=3 X=4
1.25R, 13157 14010 14351 13208 14079 14424 13212 14085 14430 13109 13988 14349 13113 13993 14355
1.50R, 34552 36146 36641 34749 36395 36897 34752 36403 36908 34493 36139 36682 34496 36148 36693
1.75R, 52314 54437 55086 52907 55144 55804 52892 55142 55806 52352 54611 55293 52338 54608 55295
2.00R, 64074 66549 67364 65481 68219 69059 65469 68208 69053 64250 66976 67851 64238 66965 67845
2.50R, 75356 76491 77198 76337 80006 81153 77686 80953 82021 72177 75679 76853 73526 76626 77722
3.00R, 93104 88747 88276 79038 83153 84401 82900 86370 87477 73140 76418 77654 77003 79635 80730
4.00R, 126095 115610 113773 82241 86600 87911 85748 89689 90907 76037 79325 80533 79544 82415 83529
5.00R, 139384 127204 124945 84989 89436 90773 86028 90109 91361 78923 82253 83260 79962 82926 83848

The H-O-H angle is kept fixed at its equilibrium value taken from Ref. [109] (o, = 104.501 degree). R is an O-H distance and R, = 0.95785
A is the equilibrium value of R [109]. All energies E (in cm™ ) are reported as E — E(R,, «), where E(R,, ) are the corresponding values of
E at the equilibrium geometry. X is a cardinal number defining the aug-cc-pCV XZ basis sets used in the calculations. In all CC calculations, all

electrons were correlated
2 Equivalent to the CCSD(2)7 approach of Ref. [38]

b CR-CC(2, 3)+Q(x) = CR-CC(2, 3) + [CR-CCSD(TQ), x — CR-CCSD(T)], x = a, b

surface is less certain. A comparison of the MRCI(Q) and
best CR-CC data may help us to decide if the ES potential
needs further improvements in the regions of intermediate R
or Y values and energies that connect the region of the global
minimum with the asymptotes.

The main CC and CR-CC results for the three poten-
tial energy surface cuts examined in this work (the CC and
CR-CC energies calculated relative to the corresponding
energies at the minimum taken from Ref. [109]) are given
in Tables 3, 4, 5. In order to facilitate our analysis, we give in
Tables 6, 7, 8 the differences between the CC/CR-CC and the
corresponding MRCI(Q) energies for each of the three aug-
cc-pCV XZ basis sets used in the CC/CR-CC calculations. In
Table 9, we compare the errors in the best CR-CC(2,3)+Q(b)/
X = 4 results, relative to the MRCI(Q)/X = 4 data, with the
differences between the CR-CC(2,3)+Q(b)/X = 4 and ES
energies and the analogous differences between the
MRCI(Q)/X = 4,5 and ES energies.

A close inspection of Tables 3 to 8, particularly Tables 6
to 8, allows us to appreciate the nature of the challenges the
single-reference CC methods face when describing global
potential energy surfaces along bond breaking coordinates.

@ Springer

It also allows us to reemphasize the usefulness of the three
dissociation pathways that we chose in this study to test the
CC and CR-CC methods, which create different types of bond
breaking or bond stretching situations. Indeed, the relatively
large differences between the CCSD and MRCI(Q) energies,
which exceed ~300-700 cm~! for small stretches of the
O-H bond(s) (R ~ 1.25R, — 1.5R, in the case of cut (i),
R ~ 1.25R, in the case of cut (i), and ¥ ~ 0.8 — 0.9 A
in the case of cut (iii)), and huge differences between the
CCSD and MRCI(Q) energies, on the order of 4,000-7,000
cm~ L, in the R > 3R, region of cut (i) and R ~ 2R, — 3R,
region of cut (ii), and more than 1,000 cm~! for larger Y
values in the case of cut (iii), clearly show that one needs
to include higher-than-doubly excited clusters in the CC cal-
culations to obtain reasonable results. Not surprisingly, the
CCSD approach is qualitatively correct in the case of cut
(i), which corresponds to single-bond breaking (which is,
in the zero-order approximation, a two-electron process),
producing errors relative to MRCI(Q) which monotonically
increase with R, while being completely erratic in the case
of the double O-H dissociation defining cut (ii), producing a
large hump in the region of intermediate R values. The CCSD
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Table 5 The C», dissociation of water into Hy (X 12;) and O(Zp4 D) (cut (iii))

Y o CCSD

CCSD(T)

CR-CCSD(T)

CR-CC(2,3),A*

CR-CC(2,3)

X=2 X=3

X =4

X=2 X=3 X=4

X=2 X=3

X=2 X=3 X=4

X=2 X=3 X=4

4774
10376
17384
24974
32808
39726
49953
55899
57688
59495

5126
10928
18147
25995
34103
41129
51355
57130
58693
60316

0.80
0.90
1.00
1.10
1.20
1.30
1.50
1.75
2.00
4.00

78.808
69.118
61.113
56.072
53.429
48.314
38.432
29.171
22.855
10.589

5303
11201
18499
26411
34568
41615
51853
57642
59243
60926

4555

9977
16770
24122
31700
38513
48998
55485
57335
58738

4847
10432
17407
24997
32836
39783
50382
56838
58525
59825

5017
10691
17739
25385
33268
40238
50864
57358
59102
604383

4597
10056
16897
24310
31969
38830
49259
55596
57444
59006

4904
10536
17568
25228
33158
40155
50675
56941
58609
60031

5074
10797
17903
25621
33597
40618
51163
57462
59180
60672

4880
10492
17500
25135
33039
40031
50586
56915
58615
60063

4579
10022
16844
24240
31887
38760
49231
55595
57456
59037

5049
10752
17833
25525
33471
40483
51060
57430
59186
60704

4558

9992
16789
24155
31771
38617
49051
55444
57299
58768

4867
10468
17470
25088
32963
39923
50433
56787
58503
59872

5044
10744
17827
25514
33438
40416
50943
57331
59083
60543

CCSD(TQ),b

CR-CCSD(TQ),a

CR-CCSD(TQ),b

CR-CC(2,3)+Q(a)®

CR-CC(2,3)+Q(b)®

X=2 X=3

X =4

X=2 X=3 X=4

X=2 X=3 X=4

X=2 X=3 X=4

X=2 X=3 X=4

4535

9945
16727
24067
31631
38454
48996
55500
57312
58689

4838
10416
17385
24966
32797
39757
50402
56837
58468
59724

0.80
0.90
1.00
1.10
1.20
1.30
1.50
1.75
2.00
4.00

78.808
69.118
61.113
56.072
53.429
48.314
38.432
29.171
22.855
10.589

5008
10676
17717
25357
33234
40218
50891
57361
59047
60384

4549

9969
16767
24138
31765
38655
49211
55636
57498
59036

4858
10452
17443
25061
32958
39979
50615
56968
58653
60058

5029
10715
17779
25457
33400
40444
51101
57487
59225
60701

4551

9973
16772
24140
31759
38633
49177
55605
57463
59014

4861
10458
17450
25067
32957
39964
50584
56937
58618
60025

5032
10721
17787
25464
33401
40430
51072
57457
59191
60670

4821
10385
17345
24921
32764
39747
50372
56814
58548
59899

4999
10662
17703
25349
33242
40242
50881
57356
59128
60572

4510

9905
16659
23983
31568
38442
49003
55484
57354
58798

4513

9909
16664
23986
31562
38420
48970
55452
57318
58776

4824
10390
17352
24926
32763
39732
50341
56783
58512
59866

5002
10668
17711
25356
33242
40229
50851
57326
59094
60541

The approximate minimum energy path, determined using the potential function of Ref. [102], is defined by the coordinate ¥ (in A), which is the
distance between O and the line connecting both H nuclei, and the H-O-H angle « (in degree). The equilibrium values of Y and « are Y, = 0.58641
A and o, = 104.501 degree [109]. All energies E (in cmfl) are reported as £ — E(Y,, ), where E(Y,, o) are the corresponding values of
E at the equilibrium geometry. X is a cardinal number defining the aug-cc-pCV XZ basis sets used in the calculations. In all CC calculations, all

electrons were correlated

2 Equivalent to the CCSD(2)7 approach of Ref. [38]
b CR-CC(2, 3)+Q(x) = CR-CC(2, 3) + [CR-CCSD(TQ), x — CR-CCSD(T)], x = a, b

approach is also erratic in the case of cut (iii), in which two
O-H bonds have to be significantly stretched during the
formation of the Hp(X 12;‘ ) and O2p* D) products,
although the errors relative to MRCI(Q) are not as large in
this case as in the other two cuts. One of the reasons is that
unlike cuts (i) and (ii), which lead to the fragmentations of the
closed-shell water molecule on the singlet ground-state sur-
face into open-shell (doublet or even triplet) products, which
introduce very large non-dynamic correlation effects, the
minimum energy path that defines cut (iii) leads to the forma-
tion of the closed-shell (Ha (X ! X)) orsinglet (02 p* D))
fragments while the O—H bonds are broken. Moreover, the
hydrogen product molecule is a two-electron system, which
is described exactly by the CCSD approach. These diffe-
rences between cuts (i) and (ii), on the one hand, and cut
(iii), on the other hand, can be seen by examining the largest

doubly excited (77) cluster amplitudes. The largest spin-free
T, amplitude, which corresponds to the HOMO — LUMO
double excitation at R = SR, of cut (i) equals, according to
the CCSD/X = 4 calculations, —0.858278 (this is a single-
bond breaking case, so other 7> amplitudes are much smal-
ler). The two largest 7> amplitudes, which correspond to
the HOMO — LUMO and (HOMO — 1) — (LUMO + 1)
double excitations at R = 5R, of cut (ii) equal, according to
the CCSD/X = 4 calculations, —0.774880 and —0.774382,
respectively (clearly, there are a few other large 7> ampli-
tudes in this case, which engage the highest two occupied and
lowest two unoccupied orbitals, since this is a double disso-
ciation of water into 2H(Ls 2S) + O(2p* 3 P) that involves,
in the zero-order description, four active orbitals and four
electrons). For comparison, the largest 7> amplitudes along
the minimum energy path defining cut (iii) never exceed
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Table 6 The differences between CC/CR-CC energies, calculated rela-
tive to their equilibrium values (the CC/CR-CC [E — E(R,, «,)] values
in Table 3) and the corresponding MRCI(Q) relative energies (the

MRCI(Q) [E — E(R,, a,)] values in Table 2) for the dissociation of a
single O—H bond in water (into H(1s 28) + OH(X 211); cut (i)

R CCSD CCSD(T) CR-CCSD(T) CR-CC(2,3),A% CR-CC(2.3)

X=2 X=3 X=4 X=2 X=3 X=4 X=2 X=3 X=4 X=2 X=3 X=4 X=2 X=3 X=4
1.25R, 280 306 308 43 4 -3 92 70 65 72 4 35 57 39 39
1.50R, 642 695 701 78 11 ) 206 176 167 160 110 97 118 96 97
1.75R, 1132 1253 1270 89 19 6 365 363 356 286 243 227 175 186 186
2.00R, 1822 2077 2124 42 5 5 608 687 698 487 490 483 248 321 351
2.50R, 3421 4031 4168 —667 —649 —619 1115 1410 1469 889 1019 1039 369 662 725
3.00R, 4479 5347 5554  —2134 -2211 —2195 1307 1726 1811 997 1185 1213 326 706  8I3
4.00R, 5207 6277 6539  —4385 —4732 —4785 1250 1726 1818 871 1068 1092 168 584 720
S00R, 5355 6479 6754  —5211 —5689 —5779 1137 1611 1699 746 934 954 93 490 625
R CCSD(TQ),b CR-CCSD(TQ),a CR-CCSD(TQ),b CR-CC(2,3)+Q(a)° CR-CC(2,3)+Q(b)®

X=2 X=3 X=4 X=2 X=3 X=4 X=2 X=3 X=4 X=2 X=3 X=4 X=2 X=3 X=4
1.25R, 18 —10  —16 40 20 16 41 22 18 5 -1 -10 6 -9 -8
1.50R, 20 —30  —41 91 64 56 90 65 58 2 -16 —14 1 -15  -12
1.75R, —17  —64  —74 178 179 174 170 175 172 —12 2 5 —21 -1 2
2.00R, —119 —128 —124 353 433 445 331 417 432 -7 67 99 -30 51 86
2.50R, —885 —845 —811 781 1063 1122 729 1020 1084 36 315 378 —16 272 339
3.00R, —2287 —2366 —2354 961 1351 1433 911 1308 1394 —20 330 434  —70 287 395
4.00R, —4308 —4714 —4782 904 1330 1417 907 1341 1431 —179 188 319  —175 199 333
5.00R, —5006 —5568 —5679 765 1179 1262 828 1255 1341 —280 58 187  —216 135 267

X is a cardinal number defining the aug-cc-pCV XZ basis sets used in the calculations

4 Equivalent to the CCSD(2)r approach of Ref. [38]

b CR-CC(2, 3)+Q(x) = CR-CC(2, 3) + [CR-CCSD(TQ), x — CR-CCSD(T)], x = a, b

~ (.2 and are usually considerably smaller. This explains the
observed differences in the performance of the CCSD and
various CCSD-based non-iterative CC methods in the
calculations for cut (iii), where the overall behavior of the
single-reference CC methods, although not perfect, remains
quite reasonable, and the other two cuts examined in this
work, where the standard CC approximations, including
CCSD, CCSD(T), and CCSD(TQ),b, display dramatic
failures.

The above discussion confirms the known fact that one has
to go beyond the basic CCSD approximation and account for
higher-than-doubly excited clusters to obtain a quantitatively
accurate description of the potential energy surface, even in
the vicinity of the equilibrium geometry. This is often done
with the CCSD(T) approach, which describes the leading
effects due to triply excited clusters via non-iterative cor-
rections to the CCSD energy. As shown in our tables, the
CCSD(T) approach provides excellent results that almost
perfectly agree with the results of MRCI(Q) calculations,
when stretches of the O—H bonds are small. For example, in
the case of cut (i), the differences between the CCSD(T)/X =
4 and MRCI(Q)/X = 4 energies do not exceed 6 cm™! up to
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R = 2R, and for cut (ii) they remain smaller than 38 cm~!

up to R = 1.5R,. This is impressive, if we realize that the
R ~ 2R, and R = 1.5R, regions of cuts (i) and (ii), respec-
tively, are characterized by the energies of &~ 36, 000 cm ™.
A similarly impressive performance of CCSD(T) is observed
for other aug-cc-pCV XZ basis sets, although we should note
arather substantial error increase, relative to MRCI(Q), when
the X = 2 basis sets is employed (particularly for cuts (i) and
(i1); cf. Tables 6 and 7). Interestingly enough, in the case of cut
(i), the CCSD(T) results remain reasonable up to ~67,000
em™! or R ~ 2R, (unsigned errors relative to MRCI(Q)
on the order of 200-300 cm ™). One has to be very careful,
however, in interpreting these high accuracies obtained with
CCSD(T) for small and, in the case of cut (ii), intermediate
stretches of the O—H bonds, particularly that CCSD(T) even-
tually suffers significant breakdowns and it may not always
be easy to predict when one should stop trusting the CCSD(T)
approach. Indeed, if we correct the CCSD(T) results for the
dominant effects due to quadruply excited clusters, as is
done by the CCSD(TQ),b approach, which can only improve
the quality of CC calculations in non-degenerate regions of
the potential energy surface, the agreement between the CC
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Table 7 The differences between CC/CR-CC energies, calculated rela-
tive to their equilibrium values (the CC/CR-CC [E — E(R,, «,)] values
in Table 4) and the corresponding MRCI(Q) relative energies (the

MRCI(Q) [E — E(R,, a,.)] values in Table 2) for the C;,-symmetric
double dissociation of water (into 2H(1s 2S) + O(2p* 3 P); cut (ii))

R CCSD CCSD(T) CR-CCSD(T) CR-CC(2,3),A4 CR-CC(2,3)

X=2 X=3 X=4 X=2 X=3 X=4 X=2 X=3 X=4 X=2 X=3 X=4 X=2 X=3 X=4
1.25R, 600 657 662 93 14 1 206 164 154 160 100 86 107 73 79
1.50R, 1466 1594 1609 189 65 38 530 488 469 402 313 286 274 233 254
1.75R, 2644 2942 2984 197 91 66 1028 1071 1059 741 690 660 474 538 547
2.00R, 4063 4703 4808 —285 —246  —232 1612 1889 1917 949 1061 1059 381 647 709
2.50R, 5156 7068 7460 —7302 —6486 —6258 845 2097 2329 -2012 —-1260 —1111 —-3314 —2230 —1971
3.00R, 3398 6065 6646 —19659 —19279 —19133 —1862 —170 157 —6334 5746 —5647 —7760 —6904 —6589
4.00R, 1436 4321 4956 —33244 —34423 —34697 —4293 —2579 —2258 —9433 —9079 —-9052 —10497 —9854 —9636
5.00R, 859 3750 4388 —37103 —38961 —39412 —5032 —3360 —3049 —10291 —9999 —9985 —11098 —10542 —10563
R CCSD(TQ),b CR-CCSD(TQ),a CR-CCSD(TQ),b CR-CC(2,3)+Q(a)’ CR-CC(2,3)+Q(b)”

X=2 X=3 X=4 X=2 X=3 X=4 X=2 X=3 X=4 X=2 X=3 X=4 X=2 X=3 X=4
1.25R, 38 -17 =29 89 52 44 93 58 50 -10 -39 =31 —6 —34 -25
1.50R., 46 —42 —65 243 207 191 246 215 202 -13 -49 =24 -10 —40 -13
1.75R, —45 —118 —138 548 589 580 533 587 582 =7 56 69 —21 53 71
2.00R, —334 —-363 -—-366 1073 1307 1329 1061 1296 1323 —158 64 121 —-170 53 115
2.50R, 1015 —635 —915 1996 2880 3040 3345 3827 3908 —2164 —1447 —1260 —-815 500 —391
3.00R, 16806 9551 8069 2740 3957 4194 6602 7174 7270  —3158 2778 —2553 705 439 523
4.00R, 49303 35878 33021 5449 6868 7159 8956 9957 10155 —755  —407 =219 2752 2683 2777
5.00R, 62544 47428 44150 8149 9660 9978 9188 10333 10566 2083 2477 2465 3122 3150 3053

X is a cardinal number defining the aug-cc-pCV XZ basis sets used in the calculations

2 Equivalent to the CCSD(2)7 approach of Ref. [38]

b CR-CC(2, 3)+Q(x) = CR-CC(2, 3) + [CR-CCSD(TQ), x — CR-CCSD(T)], x = a, b

and MRCI(Q) results in the R < 2R, regions of cuts (i)
and (ii) is no longer as impressive as in the CCSD(T) case.
For example, the —2 and 5 cm™! differences between the
CCSD(T)/X = 4 and MRCI(Q)/X = 4 energies obtained
for cut (i) at R 1.5R, and 2R, increase to —41 and
—124 ecm™!, respectively, when the CCSD(TQ),b method
is employed. The 1 and 38 cm™! differences between the
CCSD(T)/X = 4 and MRCI(Q)/X = 4 energies obtained
for cut (ii) at R 1.25R, and 1.5R, increase, in abso-
lute value, to 29 and 65 cm™!, when instead of CCSD(T)
we use the CCSD(TQ),b method. This means that either the
CCSD(T) results are very accurate due to fortuitous can-
cellation of errors or the MRCI(Q) results that we use as a
benchmark are not as accurate as the CCSD(TQ),b results
in the region of smaller stretches of the O—H bonds, where
CCSD(TQ),b can be safely applied, creating a false impres-
sion about superb accuracy of the CCSD(T) approximation.
Clearly, both interpretations are possible. For example, the
CCSD(T) approach is known to provide the results which are
often better than those obtained with the full CCSDT method,
which makes no physical sense whatsoever. We believe thatin
the case of water the CCSD(TQ),b approach is more accurate

than MRCI(Q) in the spectroscopic region and moderate
stretches of the O—H bond(s), although both methods provide
high quality results. Our belief is based on the fact that the
CCSD(TQ),b method includes higher-order dynamical cor-
relation effects, which dominate in the spectroscopic region
and which are not present in MRCI(Q). The overall superio-
rity of CCSD(TQ),b over MRCI(Q) for moderate stretches of
the O—H bond(s) can be seen by comparing the differences
between the CCSD(TQ),b/X = 4 and ES energies in the
R < 2R, regions of cuts (i) and (ii) with the correspon-
ding differences between the MRCI(Q)/X = 4 and ES ener-
gies. This illustrates the well-known advantage of using the
CC methods over MRCI techniques, which are not as effec-
tive in accounting for the dynamical correlation effects that
dominate electron correlations near the equilibrium geome-
try as the high-level CC approaches. Interestingly enough,
further increase of the basis set makes the agreement bet-
ween the MRCI(Q) and ES surfaces in the region of smaller
stretches of the O—H bond(s), where the ES potential function
is nearly spectroscopic, even worse (cf. the MRCI(Q)/X =
4 and MRCI(Q)/X = 5 results in Table 9). The superio-
rity of the CCSD(TQ),b and related CCSD(TQy) methods,
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Table 8 The differences between CC/CR-CC energies, calculated rela-
tive to their equilibrium values (the CC/CR-CC [E — E(R,, «,)] values
in Table 5) and the corresponding MRCI(Q) relative energies (the
MRCI(Q) [E — E(R., a.)] values in Table 2) for the C5, dissociation

of water into Ho (X ! E;) and O(Zp4 D) along the approximate mini-
mum energy path determined using the potential function of Ref. [102]

(cut (iii))

Y o CCSD CCSD(T) CR-CCSD(T) CR-CC(2,3),A* CR-CC(2,3)

X=2 X=3 X=4 X=2 X=3 X=4 X=2 X=3 X=4 X=2 X=3 X=4 X=2 X=3 X=4
0.80 78.808 273 317 322 54 38 36 96 95 93 78 71 68 57 58 63
0.90 69.118 488 554 562 89 58 52 168 162 158 134 118 113 104 94 105
1.00 61.113 742 821 833 128 81 73 255 242 237 202 174 167 147 144 161
1.10 56.072 1021 1108 1124 169 110 98 357 341 334 287 248 238 202 201 227
1.20 53.429 1311 1404 1420 203 137 120 472 459 449 390 340 323 274 264 290
1.30 48.314 1425 1506 1520 212 160 143 529 532 523 459 408 388 316 300 321
1.50 38.432 1159 1184 1191 204 211 202 465 504 501 437 415 398 257 262 281
1.75 29.171 557 526 526 143 234 242 254 337 346 253 311 314 102 183 215
2.00 22.855 918 1030 1062 565 862 921 674 946 999 686 952 1005 529 840 902
4.00 10.589 1961 2258 2336 1204 1767 1893 1472 1973 2082 1503 2005 2114 1234 1814 1953
Y o CCSD(TQ),b CR-CCSD(TQ),a CR-CCSD(TQ),b CR-CC(2,3)+Q(a)” CR-CC(2,3)+Q(b)?

X=2 X=3 X=4 X=2 X=3 X=4 X=2 X=3 X=4 X=2 X=3 X=4 X=2 X=3 X=4
0.80 78.808 34 29 27 48 49 48 50 52 51 9 12 18 12 15 21
090 69.118 57 42 37 81 78 76 85 84 82 17 11 23 21 16 29
1.00 61.113 85 59 51 125 117 113 130 124 121 17 19 37 22 26 45
1.10 56.072 114 79 70 185 174 170 187 180 177 30 34 62 33 39 69
1.20 53.429 134 98 86 268 259 252 262 258 253 71 65 94 65 64 94
1.30 48.314 153 134 123 354 356 349 332 341 335 141 124 147 119 109 134
1.50 38.432 202 231 229 417 444 439 383 413 410 209 201 219 176 170 189
1.75 29.171 158 233 245 294 364 371 263 333 341 142 210 240 110 179 210
2.00 22.855 542 805 866 728 990 1044 693 955 1010 584 885 947 548 849 913
4.00 10.589 1155 1666 1794 1502 2000 2111 1480 1967 2080 1264 1841 1982 1242 1808 1951

X is a cardinal number defining the aug-cc-pCV XZ basis sets used in the calculations

2 Equivalent to the CCSD(2)7 approach of Ref. [38]

b CR-CC(2, 3)+Q(x) = CR-CC(2, 3) + [CR-CCSD(TQ), x — CR-CCSD(T)], x = a, b

which account for triply and quadruply excited clusters, over
CCSD(T), which ignores the latter clusters, in applications
involving potential energy surfaces near the equilibrium geo-
metry is well-documented as well (cf., e.g., Refs. [11-13,
19,20,30,32,57,127-129]) and our calculations confirm this
superiority, in spite of the tiny (and misleading) differences
between the CCSD(T) and MRCI(Q) energies for cuts (i)
and (ii).

Before discussing the failures of the CCSD(T) and
CCSD(TQ),b methods at larger O—H separations of cuts (i)
and (ii) and improvements offered by the CR-CC methods,
which are quite apparent when we examine the results shown
in Tables 3 to 8, let us point out that in the case of cut (iii), the
behavior of the CCSD(T) and CCSD(TQ),b methods vs. the
MRCI(Q) approach is somewhat different, when compared
to the other two cuts explored in this work. As already pointed
out above, the doubly excited (also, singly excited) cluster
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amplitudes along the minimum energy path defining cut (iii)
never become large and the corresponding Hp (X ' X ;‘ ) and
O@2p* ' D) dissociation products are of the closed-shell
(Hy(Xx ! Z‘;‘)) or open-shell singlet (O(2p* ! D)) type. Thus,
it is not completely surprising to observe the relatively good
performance of the standard single-reference CCSD(T) and
CCSD(TQ),b approaches in the entire region of ¥ values
shown in our tables (with the exception, perhaps, of the last
two points, ¥ = 2.0 and 4.0 A, although we must remember
that these points are located at more than 58,000 cm~ ! above
the global minimum, which makes the ~500-1,900 cm™!
errors relatively small, particularly for the relatively inexpen-
sive single-reference calculations using the RHF reference;
cf. the discussion below for the additional remarks). In par-
ticular, the differences between the CCSD(T) and MRCI(Q)
energies do not exceed 250 cm~linthe entire ¥, < Y <
1.75A region, in which energies become as large as
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Table 9 The differences between the CR-CC(2,3)+Q(b) and MRCI(Q)
energies obtained with the aug-cc-pCVQZ (X = 4) basis, the diffe-
rences between the CR-CC(2,3)+Q(b)/aug-cc-pCVQZ and ES energies,
and the differences between the MRCI(Q)/aug-cc-pCVXZ (X = 4,5)
and ES energies (all energies calculated relative to their corresponding
equilibrium values, as in the earlier tables) for the three cuts of the water

potential energy surface: (i) the dissociation of a single O—H bond, (ii)
the Co,-symmetric dissociation of both O—H bonds, and (iii) the C»,
dissociation into Hp (X 1Z‘;') and O(2p4 1 D) (see Table 2 for the defi-
nitions of R and Y, the corresponding values of the H-O-H angle «,
and thelequilibrium values of R, Y, and «). All energy differences are
in cm

R CR-CC(2,3)+Q(b)/X=4  CR-CC(2,3)+Q(b)/X=4  MRCI(Q)/X=4  MRCI(Q)/X=5
—MRCI(Q)/X=4 —ES —ES —ES
H,O(X 'A;) — H(1s 28) + OH(X 21)
1.25R, -8 -21 -13 29
1.50R, -12 116 128 197
1.75R, 2 -17 —-19 71
2.00R, 86 118 32 138
2.50R, 339 1051 712 833
3.00R, 395 861 466 591
4.00R, 333 277 —56 69
5.00R, 267 134 —133 -8
H,O(X 'A;) — 2H(1s 28) + OQ2p* 3 P)
1.25R, -25 —11 14 98
1.50R, —13 541 554 691
1.75R. 71 666 595 778
2.00R, 115 491 376 596
2.50R, —391 —448 —57 204
3.00R, 523 145 —378 —107
4.00R, 2777 2338 —439 —171
5.00R, 3053 2629 —424 —157
Y CR-CC(2,3)+Q(b)/X=4  CR-CC(2,3)+Q(b))X=4  MRCI(Q)/X=4  MRCI(Q)/X=5
—MRCI(Q)/X=4 —ES —ES —ES
HyO(X 'A)) - Hy(X ') + 0@2p* ' D)
0.80 21 4 -17 25
0.90 29 8 —21 41
1.00 45 —216 —261 —182
1.10 69 —1233 —1302 —1206
1.20 94 —3084 —3178 —3066
1.30 134 —3497 —3631 —3511
1.50 189 —1286 —1475 —1351
1.75 210 15 —195 —75
2.00 913 608 —305 —192
4.00 1951 1845 —106 -2

~57,000cm™! (recall that ¥, = 0.58641 10\), and are smal-
ler than 100 cm ™! when Y does not exceed 1.1 A (energies
below ~27,000 cm~!). The CCSD(TQ),b approach reduces
these differences even further, showing a nice and systema-
tic behavior of the single-reference CC theory in this case.
Clearly, it is interesting to examine if the CR-CC approaches,
which are primarily designed to improve the CC results when
a system is fragmented into open-shell fragments, can main-
tain the high accuracies of the CCSD(T) and CCSD(TQ),b

calculations and systematic improvements in the results when
going from the triples to the quadruples levels of CC theory in
the case of the minimum energy path that leads to the singlet,
but non-closed-shell products.

One issue that we do not address in this study and that may
affect the results of all CC and CR-CC calculationsinthe Y >
2.0 A region of cut (iii) (and, perhaps, the best CR-CC results
in the R > 3R, region of cut (ii)) is the issue of the exis-
tence of the avoided crossings of ground and excited states
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of water at larger internuclear separations (see, e.g., Refs.
[113,114,118,119] and references therein). For example, it
is possible that for the larger, but not the largest, values of Y of
cut (ii), where the H-H bond is still somewhat stretched, other
dissociation channels, such as Hy (b 32;') +0@p* 3P),
compete with the ground-state Hy (X 12; ) +0@2p* 'D)
channel and that the CCSD solutions that we found, for
example, at Y = 4.0 A, are not necessarily the solutions that
correlate with the lowest-energy state of water of the 'A;
symmetry. This would explain a steep increase in the errors
of the CCSD(T), CCSD(TQ),b, and all, otherwise very accu-
rate, CR-CC calculations in the ¥ > 2.0 A region of cut
(iii), from ~200-400 cm~! at ¥ = 1.75 A to ~1,800-2,100
em~'at Y = 4.0 A. We tried to find other CCSD solutions
inthe Y > 2.0 A region, but we have not been success-
ful. Thus, it may be necessary to calculate other electronic
states in the ¥ > 2.0 A region, which one can try to do
using, for example, the excited-states CR-CC methods, such
as CR-EOMCCSD(T) [87,88], and the excited-state variant
of CR-CC(2,3) tested in Refs. [14,44], in which the properly
renormalized triples corrections are added to the energies
obtained in the equation-of-motion (EOM) CCSD calcula-
tions. It is not unusual to observe the switching between the
ground and low-lying excited states of the same symmetry
in CC/EOMCC calculations in the vicinity of avoided cros-
sings [130]. The state-switching of this type would explain
the larger errors in the ¥ > 2.0 A region observed in our CC
calculations. We will examine this issue in the future.

Much of the above discussion points to the importance of
properly balancing various correlation effects and the need
to account for the triple as well as quadruple excitations in
the high quality calculations of molecular potential energy
surfaces. The properly constructed theory should provide an
accurate description of triply, quadruply, and, if need be,
other higher-order clusters, without the fortuitous cancella-
tion of errors that the CCSD(T) approach displays. Clearly,
the good theory should also eliminate the significant failures
of the CCSD(T), CCSD(TQ),b, and other similar methods
at larger internuclear separations or at least be more robust
in this regard. In the case of the water potential examined in
this work, these failures are dramatic. As shown in Tables 3
to 8 (particularly, Tables 6 to 8), the unsigned errors in the
CCSD(T)/X = 2 — 4 energies, relative to the correspon-
ding MRCI(Q)/X = 2 — 4 data, range between 619 and
5,779 cm™!, when the R = 2.5R, — 5R, region of cut (i)
is examined, and 6,258 and 39,412 cm~!, when the R =
2.5R, — 5R, region of cut (ii) is explored, and the CCSD(T)
energies go considerably below the MRCI(Q) energies. The
CCSD(TQ),b approach does not improve the situation at all,
producing the 811-5,679 cm™~! unsigned errors, relative to
MRCI(Q), in the R = 2.5R, — 5R, region of cut (i) and the
635-62,544 cm ™! unsigned errors, relative to the correspon-
ding MRCI(Q) data,inthe R = 2.5R,—5R, region of cut (ii).
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Unlike CCSD(T), the CCSD(TQ),b energies are significantly
above the corresponding MRCI(Q) energies at larger O—H
separations of cut (ii), while being below the MRCI(Q) ener-
gies for cut (i). All of this demonstrates the divergent beha-
vior of the standard single-reference CC methods, caused
by the large non-dynamic correlation effects (which mani-
fest themselves through large doubly excited cluster ampli-
tudes, as described above), the poor description of the wave
function by the CCSD approach, on which the CCSD(T)
and CCSD(TQ),b methods rely, and the strongly divergent
nature of the many-body perturbation theory (MBPT) series,
on which the standard (T) and (TQ) energy corrections are
based, in the regions of larger internuclear separations.

As shown in Tables 6 to 8, the CR-CCSD(T) method pro-
vides considerable improvements in the CCSD(T) results
for the single-bond breaking defining cut (i), reducing, for
example, the 4,385—4,785 cm ' and5,211-5,779 cm ™! errors
in the CCSD(T)/X = 2 — 4 energies at R = 4R, and 5R,,
relative to the corresponding MRCI(Q)/X = 2 — 4 data,
to 1,250-1,818 cm~! and 1,137-1,699 cm™!, respectively.
The CR-CCSD(TQ),a and CR-CCSD(TQ),b methods pro-
vide further improvements and a nice and smooth description
of the entire cut (i), with an exception, perhaps, of the last
point at R = 5R,, where a small error reduction compared
to R = 4R, may be a signature of the eventual problems
somewhere in the R > SR, region, although we are not
sure about it at this time. For example, the differences bet-
ween the CR-CCSD(TQ),b/X = 4 and MRCI(Q)/X = 4
energies smoothly increase with R, from 18 and 58 cm™!
at R = 1.25R, and 1.5R,, respectively (energies on the
order of 7,400 and 18,900 cm™'), to 432 cm~! at R = 2R,
and 1,431 cm~! at R = 4R,, where the energy is almost
44.,000cm ™. The situation for the more challenging cut (ii),
where both O—H bonds are broken, is, at least to some extent,
similar to that observed in the case of cut (i), with the CR-
CCSD(TQ),a and CR-CCSD(TQ),b methods eliminating the
pathological behavior of CCSD(T) and CCSD(TQ),b at lar-
ger stretches of both O—H bonds. Again, we observe a smooth
increase of the differences between the CR-CCSD(TQ),a or
CR-CCSD(TQ),b and MRCI(Q) energies with R, from 44
(50) and 191 (202) cm™! at R = 1.25R, and 1.5R,, where
energies are on the order of ~14,000 and 36,000 cm™ !, res-
pectively, through 1,329 (1,323) cm~lat R = 2R., where
the energy exceeds 67,000 cm~!,and 9,978 (10,566) cm~!at
R = 5R,, where the energies exceed 81,000 cm~!, when the
CR-CCSD(TQ),a/X = 4 (CR-CCSD(TQ),b/X = 4) results
are examined. We do not claim that these are superb results,
but it is quite encouraging to see that the CR-CC methodo-
logy is capable of providing significant improvements over
the standard CC results, even when the double dissociation
of water is examined. There is, of course, a difference bet-
ween the behavior of the CR-CCSD(T) method in the case
of the double O-H dissociation defining cut (ii) and the
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single-bond breaking defining cut (i). The CR-CCSD(T)
approach provides a reasonably smooth description of cut
(i), while failing in the case of cut (ii). This is a conse-
quence of ignoring the quadruply excited clusters in the CR-
CCSD(T) calculations, which are absolutely critical in cases
of double bond breaking (while improving accuracies in the
calculations for single-bond breaking). It is interesting to
observe, though, the substantial improvements in the poor
CCSD(T) results in the R = 2.5R, — SR, region of cut
(i1) by the CR-CCSD(T) approach (error reduction in the
X = 4 calculations at R = 5R,, relative to the correspon-
ding MRCI(Q)/X = 4 result, from more than 39,000 cm™~!
in the CCSD(T) case to & 3,000 cm ™! in the CR-CCSD(T)
case). It is also interesting to observe that the CR-CCSD(T),
CR-CCSD(TQ),a, and CR-CCSD(TQ),b approaches provide
a relatively accurate and smooth description of the “easier”
cut (iii) as well. In this case, as pointed out above, the conven-
tional CCSD(T) and CCSD(TQ),b approximations work
quite well, but it is good to see that the CR-CCSD(T) and
CR-CCSD(TQ),x (x = a,b) methods are, more or less,
equally effective, with the CR-CCSD(TQ),x approaches pro-
viding systematic improvements over the relatively good CR-
CCSD(T) results. The ~90-530 cm ™! differences between
the CR-CCSD(T) and MRCI(Q) energies and the slightly
smaller ~50-440 cm~! differences between the
CR-CCSD(TQ),x and MRCI(Q) energies in the entire ¥ =
0.8 — 1.75 A region, where energies grow from about 5,000
to more than 57,000 cm~! above the global minimum, is
clearly an encouraging result, confirming the usefulness of
the CR-CC methods.

The CR-CCSD(T) and CR-CCSD(TQ),x (x = a,b)
methods provide substantial improvements in the regions of
larger internuclear separations, where the standard CCSD(T)
and CCSD(TQ),b approaches fail, but it would be useful to
achieve further error reduction in the CR-CC calculations,
particularly in the cases of cuts (i) and (ii), which are more
challenging for the single-reference CC methods than cut
(iii). It would also be useful to improve the results of CR-CC
calculations in the vicinity of the equilibrium region, where
the CCSD(T) and CCSD(TQ),b methods are somewhat more
accurate than the CR-CCSD(T) and CR-CCSD(TQ),x (x =
a, b) approaches. As explained in Refs. [41,42], the recently
proposed CR-CC(2,3) theory not only eliminates the small
size extensivity errors from the CR-CCSD(T) results (which
in the case of water are negligible, since water molecule is
a small, 10-electron system), but it also improves the accu-
racy of CR-CCSD(T) calculations by adding various product
terms involving the singly and doubly excited clusters and the
triply excited moments of the CCSD equations to the bare
triexcited moment terms that are already present in the CR-
CCSD(T) triples correction formula [131]. It is, therefore,
interesting to examine the performance of the CR-CC(2,3)
approach using the three cuts of the water potential examined

in this work. Since we have already noticed the importance
of quadruply excited clusters in improving the results, par-
ticularly for the double O—H dissociation defining cut (ii),
it is also useful to investigate if correcting the CR-CC(2,3)
results for quadruples through the CR-CC(2,3)+Q(a) and
CR-CC(2,3)+Q(b) methods described in the Introduction
gives the desired high accuracies for a wide range of nuclear
geometries of the water system explored in this work. Fol-
lowing the discussion of the CR-CC(2,3) theory in Refs.
[41,42,44], we consider two variants of CR-CC(2,3) in this
study, namely, the complete variant D, for which we conti-
nue to use an acronym CR-CC(2,3) without additional letters,
and the approximate variant A, called CR-CC(2,3),A, which
is obtained by replacing the diagonal matrix elements of the
similarity-transformed Hamiltonian of CCSD involving tri-
ply excited determinants, which enter the triples correction
of CR-CC(2,3), by the usual MBPT denominator defining
triple excitations, i.e., (¢, + €, + €. — €; —€; — €;). The CR-
CC(2,3),A approach is equivalent to the CCSD(2)r method
of Ref. [38].

As shown in Tables 3 to 8, the CR-CC(2,3),A
(= CCSD(2)1) and full CR-CC(2,3) (= CR-CC(2, 3),D)
approaches provide improvements in the CR-CCSD(T)
results for the single-bond breaking defining cut (i) and the
C», dissociation pathway into Hp (X 12; ) and O(2 p4 1D)
in the entire regions of the corresponding R and Y values.
They also improve the description of the double dissociation
of water defining cut (ii) by the CR-CCSD(T) method in the
R = R, — 2.5R, region. For example, in the case of cut
(i), the CR-CC(2,3),A approach reduces the 65, 167, 698,
1,811, and 1,699 cm~! errors in the CR-CCSD(T)/X = 4
results, relative to the corresponding MRCI(Q)/X = 4 data,
at R = 1.25R,, 1.5R,, 2R,, 3R,, and 5R, to 35, 97, 483,
1,213, and 954 ¢cm~!, respectively. With an exception of
R = 1.25R, and 1.5R,, where errors remain almost unchan-
ged, the full CR-CC(2,3) method improves the agreement
with the MRCI(Q)/X = 4 energies even further, reducing
the 483, 1,213, and 954 cm ™! errors in the CR-CC(2,3),A
energies, relative to MRCI(Q), at R = 2R,, 3R, and 5R, to
351, 813, and 625 cm ™!, respectively. We can clearly see the
benefits of using the full CR-CC(2,3) approach, as opposed to
CR-CC(2,3),A or CCSD(2)7. Similar benefits are observed,
when we compare the results of the CR-CC(2,3),A and full
CR-CC(2,3) calculations in the R = R, — 2R, region of cut
(ii) and for the the entire cut (iii). The 86—1,059 cm ! errors,
relative to MRCI(Q), in the CR-CC(2,3),A/X = 4 results
obtained in the R = R, — 2R, region of cut (ii), which are
obviously smaller than the 154-1,917 cm~! errors obtained
with CR-CCSD(T), reduce to 79-709 cm™!, when the full
CR-CC(2,3)/X = 4 method is employed. The 68-398 cm !
differences between the CR-CC(2,3),A/X=4 and
MRCI(Q)/X = 4 energiesinthe Y = 0.8 —1.75 A region of
cut (iii) reduce to 63-321 cm~!, when the full CR-CC(2,3)/
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X = 4 method is used. The use of other aug-cc-pCVXZ
basis sets does not change any of these accuracy patterns in
a substantial manner.

We can conclude that the full CR-CC(2,3) approach, with
the complete treatment the diagonal matrix elements of the
similarity-transformed Hamiltonian of CCSD involving tri-
ply excited determinants, provides the overall best results
when compared to all other non-iterative triples methods exa-
mined in this work. It is true that the CR-CC(2,3) approach
fails in the R > 2R, region of cut (ii) and it is also true that
the CR-CC(2,3) energies for smaller stretches of the O-H
bond(s) appear to be somewhat less accurate than the corres-
ponding CCSD(T) energies. We must remember, however,
that one needs quadruply excited clusters in the R > 2R,
region of cut (ii), while the perfect agreement between the
CCSD(T) and MRCI(Q) data at smaller stretches of the
O-H bond(s) is not necessarily a desired behavior. Indeed,
the explicit inclusion of quadruples in CC calculations, which
can be done in the region of smaller stretches of the O—H
bond(s) via the CCSD(TQ),b approach, makes the agreement
between the CC and MRCI(Q) data less perfect, as already
explained above. These observations agree with the perfor-
mance of the CR-CC(2,3) approach in a variety of bench-
mark calculations reported in Refs. [41,42,44], where it has
been noted that the CR-CC(2,3) energies are very close to
the full CCSDT energies, not only when CCSDT works,
but also when it fails, as is the case of multiple bond dis-
sociations. In particular, as shown in Refs. [41,44], the full
CCSDT approach completely fails in the R > 2R, region
of the double dissociation of water, analogous to our cut (ii).
Thus, the failure of CR-CC(2,3) in the same region is a desi-
red result, since one cannot break both O-H bonds in the
water molecule without quadruply excited clusters, and the
approximate triples methods, such as CR-CC(2,3), should
not be better in this regard than full CCSDT.

In view of the above discussion, it is very important to exa-
mine what happens with the CR-CC(2,3) energies if we aug-
ment them by quadruples, as is done in the CR-CC(2,3)+Q(a)
and CR-CC(2,3)+Q(b) calculations. As shown in Tables 3 to
9, the overall agreement between the CR-CC(2,3)+Q(x) (x =
a, b) and MRCI(Q) data is quite remarkable. For example,
in the case of cut (i), corresponding to the dissociation of
a single O—H bond, the 39-351 cm™! unsigned differences
between the CR-CC(2,3)/X = 4 and MRCI(Q)/X = 4 ener-
gies in the R = R, — 2R, region, in which these energies
increase to more than 35,000 cm~!, reduce to 2-86 cm™!
when the CR-CC(2,3)+Q(b)/X = 4 approach is employed.
The CR-CC(2,3)+Q(a))X = 4 method provides similar
results, although the somewhat more complete (cf. Table 1)
CR-CC(2,3)+Q(b) approximation seems better. The maxi-
mum error, relative to MRCI(Q), characterizing the
CR-CC(2,3)/X = 4 calculations in the entire range of R
values, of 813 cm~!, reduces in the CR-CC(2,3)+Q(b)/X =

@ Springer

4 calculations to 395 cm™!. Again, the CR-CC(2,3)+
Q(a)/X = 4 approach is almost as effective. The use of other
aug-cc-pCV XZ basis sets leads to similar error reductions.

The 79-709 cm ™! differences between the CR-CC(2,3)/
X =4 and MRCI(Q)/X = 4 energies inthe R = R, — 2R,
region of cut (ii), where both O—H bonds are simultaneously
stretched and where the energy goes up to more than 67,000
cm~ !, reduce (in absolute value) to 24—-121 cm~!, when the
CR-CC(2,3)+Q(a)/X = 4 method is employed, and 13-115
cm~!, when the CR-CC(2,3)+Q(b)/X = 4 approach is used.
The CR-CC(2,3)+Q(b) approach remains quite accurate up
to R = 3R,, where the energy is already larger than 80,000
cm™!. The difference between the CR-CC(2,3)+Q(b)/X = 4
and MRCI(Q)/X = 4 energies is only slightly larger than
500 cm~! in the R = 3R, region. The CR-CC(2,3)+Q(a)
approximation shows the signs of unstable behavior in the
R > 2R, region, with the signed errors relative to MRCI(Q)
changing from more than 42,000 em~! to ~(-3,000)—
(-2,000) cm~!, which is partly due to the fact that we use the
first-order MBPT estimates of doubly excited cluster ampli-
tudes in defining the (Q) corrections of CR-CC(2,3)+Q(a) (or
CR-CCSD(TQ),a [11-13,20]) and partly due to the heuristic
nature of the CR-CC(2,3)+Q approaches, which should even-
tually be replaced by the more consistent CR-CC(2,4) theory.
The somewhat ad hoc nature of the CR-CC(2,3)+Q approxi-
mations may also be responsible, at least in part, for the
~ 3,000 cm™~! differences between the CR-CC(2,3)+Q(b)
and MRCI(Q) energies in the R = 4R, — 5R, region of
cut (ii). Again, the accuracy patterns observed in the CR-
CC(2,3)+Q(a) and CR-CC(2,3)+Q(b) calculations for cut (ii),
when compared to MRCI(Q), are essentially independent of
the aug-cc-pCV XZ basis set employed in these calculations.

The CR-CC(2,3)+Q(a) and CR-CC(2,3)+Q(b) results for
cut (iii), corresponding to the C», dissociation pathway into
Ho (X 12;) and O(2p* ' D), are very good as well. Both
CR-CC(2,3)+Q(a) and CR-CC(2,3)+Q(b) methods reduce
the errors resulting from the CR-CC(2,3) calculations. The
overall accuracy of the CR-CC(2,3)+Q(b) approach in the
Y = 0.8 — 1.75 A region of cut (iii), as judged by the dif-
ferences with MRCI(Q), is better than the accuracy of the
CCSD(TQ),b method, which performs very well in this case.
It is encouraging to see the relatively small and monotoni-
cally increasing 21-210 cm ™! differences between the CR-
CC(2,3)+Q(b)/X = 4 and MRCI(Q)/X = 4 energies in the
Y = 0.8 — 1.75 A region of cut (iii), where energies go up
to ~ 57,000 cm~! above the minimum.

The overall agreement between the CR-CC(2,3)+Q(b) and
MRCI(Q) results for all three potential surface cuts exa-
mined in this study is excellent, particularly if we keep in
mind the single-reference nature of the CR-CC(2,3)+Q(b)
calculations. The fact that with an exception of the R =
4R, — 5R, region of cut (i) and the ¥ = 2.0 — 4.0 A region
of cut (iii), the CR-CC(2,3)+Q(b) and MRCI(Q) energies
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agree to within 500 cm~! and, in most cases, to within 100
ecm™! or less is a clear demonstration of the large poten-
tial offered by the CR-CC theories. The CR-CC(2,3) and
CR-CC(2,3)+Q(b) methods seem to be at least as effective as
the CCSD(T) and CCSD(TQ),b methods in the vicinity of the
equilibrium geometry, where the many-electron correlation
effects are primarily of dynamical nature, while providing
the accuracy comparable to the MRCI(Q) approach in the
higher-energy potential energy surface regions characterized
by large non-dynamical correlation effects. In the case of the
water molecule, we seem to be able to obtain the relatively
small differences between the results of the CR-CC(2,3)+Q(b)
and MRCI(Q) calculations, on the order of 100-500 cm ™" or
less, for the energies as large as 60,000-70,000 cm~! above
the global minimum. This is an encouraging finding, consi-
dering the single-reference character and the relatively low
cost of all CR-CC calculations (cf. Table 1). This is also very
promising from the point of view of applying the CR-CC
methods in calculations aimed at the construction of accurate
global potential functions for dynamical studies. The proxi-
mity of the CR-CC(2,3)+Q(b) and MRCI(Q) results for the
large portion of the global potential energy surface of water
and the fact that the CR-CC(2,3)+Q(b) approach remains as
accurate as the CCSD(TQ),b method in the vicinity of the
equilibrium geometry open up new avenues for constructing
highly accurate global potentials, since switching between
the CR-CC(2,3)+Q(b) and MRCI(Q) energies, which are so
similar, should be quite straightforward. In the future, we will
replace the somewhat heuristic CR-CC(2,3)+Q approxima-
tions tested in this work by the properly derived CR-CC(2,4)
theory, exploiting the general formalism described in Refs.
[41,42]. The excellent CR-CC(2,3)+Q results for water obtai-
ned in this work prompt such a development.

Let us, finally, address the issue of the rather substantial
differences between the MRCI(Q)/X = 4 or MRCI(Q)/X =
5 and ES potential energy surfaces in the regions of the inter-
mediate R and Y values, and intermediate or higher, but not
the highest energies, which are as much as 700-800 cm™!
for cut (i) in the R =~ 2.5R, region, 600-800 cm~! for cut
(i1) in the R =~ 1.75R, region, and 3,500-3,600 cm~! for
cut (iii) inthe Y ~ 1.3 A region. Such differences cannot be
explained by the neglect of the relativistic, non-adiabatic, and
quantum electrodynamical effects in MRCI(Q) calculations.
They indicate that either the MRCI(Q) approach employing
large basis sets is insufficiently accurate or the ES poten-
tial needs further refinement in the above regions. Although
both interpretations are possible, we tend to believe that the
accuracy of the ES potential function in the regions of inter-
mediate internuclear separations and energies, which connect
the spectroscopic and asymptotic regions, is not as high as
the accuracy of the ES surface around the minimum, up to
about 19,000cm™!, and in the H(ls 2§) + OH(X 2IT),
2H(ls 28) + O2p* #P), and Hy(X ') +02p* 'D)

asymptotic regions. We base our belief on the close proximity
of the MRCI(Q) and CR-CC(2,3)+Q(b) energies in the
regions of the intermediate R and Y values, where the
MRCI(Q)/X = 4 or MRCI(Q)/X = 5 and ES potentials
significantly differ. This is shown in Table 9, where we com-
pare the differences between the best CR-CC(2,3)+Q(b)/X =
4 energies and the corresponding MRCI(Q)/X = 4 data
with the differences between the CR-CC(2,3)+Q(b)/X = 4
and ES energies, and the analogous differences between the
MRCI(Q)/X = 4,5 and ES energies. As one can see, the
700-800 cm ™! differences between the MRCI(Q)/X = 4,5
and ES energies in the R &~ 2.5R, region of cut (i) are
very similar to the ~ 1,000 cm~! difference between the
CR-CC(2,3)+Q(b)/X = 4 and ES energies in the same region.
The 600-800 cm ™! differences between the MRCI(Q)/X =
4,5 and ES energies in the R =~ 1.75R, region of cut (ii)
are not much different than the ~ 700 cm™! difference bet-
ween the CR-CC(2,3)+Q(b)/X = 4 and ES energies in this
region. Finally, the 3,500-3,600 cm™~! differences between
the MRCI(Q)/X = 4,5 and ES energies inthe Y ~ 1.3 A
region of cut (iii) are very similar to the 3,000-3,500cm ™!
differences between the CR-CC(2,3)+Q(b)/X = 4 and ES
for Y ~ 1.2 — 1.3 A. The large consistency between the
MRCI(Q)/X = 4,5 and CR-CC(2,3)+Q(b)/X = 4 results
in the above regions of the potential energy surface of water
makes us believe that the energy values provided by both
ab initio approaches in these regions are more accurate than
those provided by the existing ES potential. This gives us
an opportunity to refine the ES global potential in the future
by incorporating some MRCI(Q) or CR-CC(2,3)+Q(b) data
from the regions of the intermediate R and Y values in the
appropriate fitting and energy switching procedures.

4 Summary and concluding remarks

In this paper, we have explored an issue of the develop-
ment of single-reference procedures that could be applied
to at least some of the most frequent multi-reference situa-
tions, such as single and double bond dissociations, by repor-
ting test calculations for the potential energy surface of the
water molecule. We have focused on a few basic renorma-
lized CC methods, including the older CR-CCSD(T), CR-
CCSD(TQ),a, and CR-CCSD(TQ),b approximations [10—-13,
20,29,30], and the most recent size extensive CR-CC(2,3),A
(or CCSD(T)r [38]) and full CR-CC(2,3) approaches that
belong to a more general class of CR-CC(m 4, m p) schemes
[41,42,44,131]. In the CR-CCSD(T), CR-CC(2,3),A, and
CR-CC(2,3) methods, the relatively inexpensive corrections
due to triply excited clusters, similar in the computer cost to
the triples corrections of the conventional CCSD(T) theory,
are added to the CCSD energy. In the CR-CCSD(TQ),a and
CR-CCSD(TQ),b approaches, the CCSD energy is correc-
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ted for the dominant effects of triply and quadruply excited
clusters in a manner reminiscent of the conventional
CCSD(TQ) approximations, such as CCSD(TQ),b [20,32]
or CCSD(TQs) [19]. Since the CR-CC(2,4) approach has not
been fully developed and implemented yet, we have conside-
red two approximate forms of the CR-CC(2,4) theory, abbre-
viated as CR-CC(2,3)+Q(a) and CR-CC(2,3)+Q(b), in which
the CR-CC(2,3) energies are a posteriori corrected for the
effect of quadruply excited clusters by using the informa-
tion about quadruples extracted from the CR-CCSD(TQ),a
or CR-CCSD(TQ),b calculations.

In order to examine the performance and benefits of using
the single-reference renormalized CC methods, we have com-
pared the results of the CR-CCSD(T), CR-CCSD(TQ),a,
CR-CCSD(TQ),b, CR-CC(2,3),A,CR-CC(2,3),CR-CC(2,3)
+Q(a), and CR-CC(2,3)+Q(b) calculations for the three
important cuts of the potential energy surface of the water
molecule, including the dissociation of one O—H bond, which
correlates with the H(1s 28) + OH(X 2IT) asymptote, the
simultaneous dissociation of both O—H bonds, which leads
to the 2H(1s 2S) + O@2p* 3P) products, and the Cy,-
symmetric dissociation pathway into Hp(X IZ‘;‘ ) and
O@2p* 'D), with those obtained in the highly accurate
MRCI(Q) calculations and those provided by the spectro-
scopically accurate ES potential function [102]. We have
demonstrated that all renormalized CC methods eliminate or
considerably reduce the failures of the conventional
CCSD(T) and CCSD(TQ),b approaches in the bond breaking
regions of the water potential, while retaining high accura-
cies of the CCSD(T) and CCSD(TQ),b methods in the vici-
nity of the equilibrium geometry. The full CR-CC(2,3) and
CR-CC(2,3)+Q(b) methods are particularly effective in this
regard. Unlike CCSD(T), the CR-CC(2,3) approach provides
a faithful description of triply excited clusters [41,42,44],
even in the equilibrium region, where the CCSD(T) approach
works well. After correcting the CR-CC(2,3) results for qua-
druples, as is done in the CR-CC(2,3)+Q(x) (x = a,b)
schemes, we obtain the potential energy surfaces of excellent
quality, particularly in the CR-CC(2,3)+Q(b) case. Indeed,
as shown in this work, the single-reference, RHF-based, CR-
CC(2,3)+Q(b) approach describes the above three cuts of the
global potential energy surface of water with accuracies that
can only be matched by the high accuracy, CASSCF-based,
MRCI(Q) calculations. We find the small differences bet-
ween the CR-CC(2,3)+Q(b) and MRCI(Q) energies, on the
order of 100-500 cm ™" or less, for energies as large 60,000—
70,000 cm ™!, where the highest possible energies correspon-
ding to the complete atomization of water are on the order of
80,000 cm~! and where the existing spectroscopically accu-
rate potentials, such as the ES function, can guarantee very
high accuracies up to about 19,000 cm™ !, to be the most
remarkable finding. At the same time, the CR-CC(2,3)+Q(b)
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approach, which is based on the excellent description of
the triply excited cluster contributions by the size extensive
CR-CC(2,3) approximation, corrected for the effects of qua-
druply excited clusters, provides a balanced description of
triples and quadruples in the bond breaking and equilibrium
regions. In the equilibrium region, the accuracy of the CR-
CC(2,3)+Q(x) (x = a, b) methods is essentially the same
as the accuracy of the CCSD(TQ),b approach, which des-
cribes the combined effect of triply and quadruply excited
clusters in non-degenerate situations extremely well. Thus,
the CR-CC(2,3) method corrected for quadruples enables us
to bridge the closed-shell and bond breaking regions of the
global potential energy surface of water, while preserving the
high accuracy of the CCSD(TQ),b results in the closed-shell
regions and matching the high quality of MRCI(Q) results
in regions of stretched chemical bonds, where CCSD(TQ),b
(and CCSD(T), of course) fails.

The excellent agreement between the CR-CC(2,3)+Q(b)
and MRCI(Q) results in regions of intermediate stretches
of chemical bonds and higher, but not the highest energies,
where the ES surface may be somewhat less accurate, has
enabled us to suggest ways of improving the global ES poten-
tial function of water that might potentially benefit future
reaction dynamics and spectroscopic studies. The regions of
intermediate stretches of chemical bonds that connect the
spectroscopic and asymptotic regions of the water potential
energy surface are not as well understood as the spectroscopic
and asymptotic regions. Thus, it is difficult to construct the
global potential of water without the high accuracy ab initio
data. The large consistency between the CR-CC(2,3)+Q(b)
and MRCI(Q) results in these intermediate regions of the
water potential suggest that we should be able to use the
CR-CC(2,3)+Q(b) approach and, once developed, the
CR-CC(2,4) approach to provide the necessary information
to improve the ES and other existing global potential
functions.
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